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ABSTRACT

Eyewall replacement cycles (ERCs) are fairly common events in tropical cyclones (TCs) of hurricane intensity or

greater and typically cause large and sometimes rapid changes in the intensity evolution of the TC. Although the

details of the intensity evolution associated with ERCs appear to have some dependence on the ambient environ-

mental conditions that the TCs move through, these dependencies can also be quite different than those of TCs that

are not undergoing an ERC. For example, the Statistical Hurricane Prediction Scheme (SHIPS), which is used in

NationalHurricaneCenter operations and provides intensity forecast skill that is, on average, equal to or greater than

deterministic numerical model skill, typically identifies an environment that is not indicative of weakening during the

onset and subsequent evolution of an ERC. Contrarily, a period of substantial weakening does typically begin near

theonset of anERC, and this disparity can cause large SHIPS intensity forecast errors.Here, a simplemodel basedon

a climatology of ERC intensity change is introduced and tested against SHIPS. It is found that the application of the

model can reduce intensity forecast error substantially when applied at, or shortly after, the onset of ERCweakening.

1. Introduction

Sitkowski et al. (2011) created a database of eyewall re-

placement cycle (ERC) events using satellite microwave

imagery, radar imagery, and flight-level aircraft reconnais-

sance data to identify the onset of an ERC. They then used

radial profiles of aircraft flight-level tangential wind to

capture the evolution of the inner and outer wind maxima

and their radii during the ERC. The use of the aircraft data

was motivated mainly by a desire to 1) capture intensity

changes on shorter time scales than the 6-hourly best-track1

resolution and 2) quantitatively capture not just the evo-

lution of the absolute maximum wind (as recorded in the

best-track dataset), but also the evolution of the primary

and secondary wind maxima separately. Additionally, this

allowed them to capture the radial contraction/expansion

of the twowindmaxima. Kossin and Sitkowski (2012) then

used this information to create simple statistical models

that could estimate the evolution of the wind maxima and

their radii based on environmental and satellite data.

The flight-level data and the models of Kossin and

Sitkowski (2012) are well suited to capturing and pre-

dicting details of wind structure evolution associated

with ERCs, but they are not optimal for addressing

operational requirements, which focus mostly on fore-

casting the maximum wind regardless of its position

relative to the storm center and not the broader details

of the wind structure and interplay between the inner

and outer wind maxima. Also, it is the best-track data,

which primarily provide intensity and storm center po-

sition estimates, that are used to ultimately measure

forecast error and skill. Here, we will direct our focus

more specifically toward operational intensity fore-

casting needs.
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1 The best-track record, known as the HURDAT record in the

North Atlantic (Landsea and Franklin 2013), comprises 6-hourly

best estimates of tropical cyclone location and intensity (measured

as the maximum sustained surface wind). The HURDAT data are

also part of the International Best Track Archive for Climate

Stewardship (IBTrACS; Knapp et al. 2010).
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The three phases of an ERC, as defined by Sitkowski

et al. (2011), include an initial phase where intensifica-

tion is continuing but the rate is slowing, a weakening

phase, and a reintensification phase. These phases were

based entirely on the coevolution of the inner and outer

wind maxima. The weakening phase is arguably the

most important from a forecasting point of view because

the intensification rate typically changes dramatically at

its onset, from positive to negative, and weakening can

persist for 12 h or longer (Willoughby et al. 1982;

Sitkowski et al. 2011). Furthermore, the weakening

phase is unique in that it is apparently driven mostly by

processes internal to the tropical cyclone and not dom-

inated by environmental factors, as will be discussed

below. Comparatively, the intensification leading up to

the onset of an ERC, and the intensity evolution after

the completion of an ERC, are apparently controlled

largely by the environment. In this respect, the weak-

ening phase of an ERC describes a brief and idiosyn-

cratic period in which the usual environmental controls

of intensity are substantially countermanded. This mo-

tivates an alternative model that can be applied as

needed to complement the existing models. Here, a

model is constructed that uses a climatology of intensity

evolution during and after the onset of the weakening

phase of an ERC to form a simple predictive model.

2. Model construction and testing

We use North Atlantic best-track data (HURDAT)

collected in 13 storms that underwent an ERC, or multiple

ERCs, while being actively sampled by aircraft recon-

naissance. Best-track intensity estimates that utilize air-

craft data (referred to here as recon-anchored best track)

provide a reasonable proxy for ground truth (e.g., Knaff

et al. 2010), albeit with the inherent temporal smoothing

applied to the 6-hourly best-track data. Because the

weakening phase of an ERC can have a relatively long

duration, there is an expectation that the weakening will

manifest itself in some way in the best track; however, in

the absence of in situmeasurements, there is uncertainty in

how well the best track can capture the transient weak-

ening period. For example, it is not clear how intensity

estimates based on remote sensing methods such as the

Dvorak technique (Velden et al. 2006) are affected by

ERCs. Our choice to restrict our analysis to ERC events

that occurred during active aircraft reconnaissance places

significant limitations on our available sample size, but

greatly reduces the uncertainty in howwell the best track is

capturing transient intensity fluctuations during an ERC.

Table 1 lists the storms and the dates and times of

onset of the weakening phase of 19 ERC events, as

manifested in the recon-anchored best-track data. The

best-track intensity evolution following the onset of

weakening for each ERC event is used to form a cli-

matology of ERC intensity evolution. In cases of land-

fall, the data taken while the storm center is over land

are omitted. Figure 1 shows the climatology of intensity

and intensity change at and after the onset of weakening

based on the ERC events and times of onset given in

Table 1. Within this sample, most ERC weakening

phases begin during periods of high intensity, at a mean

intensity of about 135 kt (1 kt 5 0.51ms21) and within

an interquartile intensity range of 120–145kt. In the first

6 h after the onset of ERC weakening, the mean in-

tensity change is 29kt; in the period 6–12h after onset

of weakening, the mean change is 26 kt; and in the pe-

riod 12–18h after the onset of weakening, the mean

change is 23 kt. Beyond 18h, the intensity change is

fairly flat and variable, with a small tendency toward

continued, but slower, weakening.

The Statistical Hurricane Intensity Prediction Scheme

(SHIPS) is a statistical model that provides intensity

forecasts based largely on the ambient environmental

conditions that the storms move through (e.g., vertical

wind shear, sea surface temperature, thermodynamic

potential intensity, etc.), and is one of the primary guidance

models that the National Oceanic and Atmospheric Ad-

ministration/National Hurricane Center (NOAA/NHC)

uses for their operational intensity forecasts (DeMaria et al.

2005). When the SHIPS intensity forecasts are analyzed

during ERCs, however, large errors can emerge.

Figures 2 and 3 compare operational SHIPS intensity

change forecasts to the observed intensity evolution

following ERCs. In Fig. 2, which is based on 12-hourly

SHIPS data, the mean observed weakening in the first

TABLE 1. ERC events during active aircraft reconnaissance and

the time and date of the onset of the ERC weakening phase, as

captured by the best-track dataset (HURDAT).

Storm Time and date

Luis 0000 UTC 5 Sep 1995

Erika 1800 UTC 9 Sep 1997

Georges 0600 UTC 20 Sep 1998

Floyd 1200 UTC 13 Sep 1999

Fabian 1800 UTC 2 Sep 2003

Isabel 1800 UTC 14 Sep 2003

Frances 1200 UTC 29 Aug, 1800 UTC 31

Aug, 0600 UTC 2 Sep 2004

Ivan 1200 UTC 9 Sep, 0000 UTC 11

Sep, 0000 UTC 12 Sep, 0600 UTC

14 Sep, 1800 UTC 15 Sep 2004

Katrina 1800 UTC 28 Aug 2005

Rita 0600 UTC 22 Sep 2005

Wilma 1200 UTC 19 Oct 2005

Dean 1200 UTC 18 Aug 2007

Danielle 1800 UTC 27 Aug 2010
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12h after ERC weakening begins is 215kt, with an

interquartile range from about220 to210kt, while the

12-h SHIPS forecast in this period predicts essentially no

intensity change. In the period 12–24 h from the time of

onset of ERC weakening, SHIPS provides forecasts of

intensity change that are much closer to the observed

changes, although the observations show a stronger

tendency for continued, but slower, weakening. Beyond

24h, the mean observed and predicted intensity changes

have roughly converged. However, while the SHIPS

intensity change predictions converge toward observa-

tions after 24 h, the errors in the first 24 h after ERC lead

to large errors in the SHIPS predictions of actual in-

tensity, and these errors are propagated forward into all

forecast lead times. Figure 3, which provides 6-hourly

intensity changes but is limited to only the most recent

ERC events in the sample (Table 1), again shows strong

weakening in the observations that is concurrent with

FIG. 1. Climatology of (a) intensity and (b) 6-hourly intensity change from the onset of ERC

weakening out to 48 h, based on the recon-anchored best-track dataset during the 19 ERC

events shown in Table 1 (values in kt). Red asterisks denote mean values, red lines denote

medians, and the blue boxes denote the 25th–75th percentiles of the samples. The whiskers

span roughly 99% of the data in each sample, and the red crosses are outliers. Annotated

integer values in (a) denote the sample size at that time. Sample size decreases at longer lead

times as storms make landfall.
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either slow intensification or a steady state predicted by

SHIPS. The disparity is particularly large in the first 12 h

and becomes smaller through the following 12h.

The disparity between SHIPS forecasts and the ob-

served intensity changes during ERCs is strongly sug-

gestive that the typical environmental controls of

intensity change, on which SHIPS is largely based, are

temporarily countermanded while dynamic processes

internal to the storm dominate the intensity evolution.

To address this issue, an alternative model is introduced

here that can be applied during ERCs as a complement

to SHIPS. The model is based on the climatology of

intensity change following onset of ERC weakening, as

shown in Fig. 1b and discussed above, and simply re-

duces intensity by 9, 6, 3, and 1kt in the 0–6-, 6–12-, 12–

18-, and 18–24-h periods after the onset of weakening,

respectively. Determining the time of onset in an oper-

ational setting poses some challenge, which will be dis-

cussed further below. The model is applied using the

operational best estimate of current intensity and simply

FIG. 2. Comparison of 12-h intensity change in recon-anchored best-track (HURDAT) vs SHIPS

predictions following the onset of ERC weakening, based on the 19 ERC events in Table 1.

FIG. 3. As in Fig. 2, but using the 6-hourly data available for the five ERC events from Katrina

(2005) through Danielle (2010) in Table 1.
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projects the climatology forward in time. The reduction

of intensity by 9, 6, 3, and 1kt in the four 6-h periods

following the onset of ERC weakening is based on the

mean values of the sample (red asterisks in Fig. 1b).

Another choice that could be made here is to form the

climatology with the median values, which would give

reductions in intensity of 10, 5, 5, and 0kt during those

periods. We could also form a climatology based on the

percentage change of current intensity at the onset of

weakening, but since these initial intensities lie within a

fairly narrow range in our sample, the difference be-

tween using an absolute change or a relative change is

small. Ultimately, given our small sample size, there is

not much objective justification for making one choice

over another, and the differences would be small. We

choose to base the climatology model on the mean

nonrelative intensity changes for the sake of parsimony.

Figure 4a shows themodel errors at various lead times

when the model is applied to the full sample of 19 ERC

events. Note that since the climatology is based on the

full sample of 19 events, the tests shown here and below

are dependent tests. Removing a single event has a

mostly minimal effect on the climatology, however,

and applying a leave-one-event-out cross-validation

approach does not significantly impact the error statis-

tics. Still, the sample is fairly small and may not be an

optimal representation of a more complete sample of

ERC events, in which case it should be understood that

the errors shown here may exhibit biases of either sign.

More importantly, the errors shown in Fig. 4a are based

on the best-case scenario in which the forecaster knows

that weakening is about to occur. This could conceivably

happen when the forecaster has access to multiple data

sources providing information that an ERC is about to

take place, but it may be unlikely that this level of

confidence would occur often. Indeed, the penalty for

applying the ERC climatology model too early (or when

an ERC is not actually taking place at all) is fairly large,

as shown in Fig. 4b, and, not surprisingly, substantial

underprediction of intensity can occur. A more realistic

scenario may be that the forecaster has evidence that an

ERC is occurring, and there are clear signs of weakening

since the previous 6-hourly forecast cycle. This would

also provide the forecaster with an additional 6 h for

other evidence of an ERC to become available from

microwave satellite or radar imagery, or aircraft re-

connaissance data. The errors associated with this sce-

nario are shown in Fig. 4c. The errors are uniformly

higher than those in Fig. 4a, as expected, but the penalty

is much smaller than in the case of applying the model

too early (Fig. 4b). This suggests that the better use of

the ERC climatology model in terms of balancing po-

tential gains and penalties would be to apply the model

in the following 6-hourly forecast cycle after the onset of

ERC weakening has been observed.

Figure 5 compares the ERC climatology model to

SHIPS. As in Fig. 4, the error characteristics are shown

for the case where the model is applied at the time of

onset of ERCweakening (Fig. 5a), 6 h too soon (Fig. 5b),

and 6h after the onset of weakening (Fig. 5c). In the case

of perfect timing (Fig. 5a), the ERC climatology model

hasmuch lower errors than SHIPS through all lead times

of the model application (i.e., 0–24 h after onset of

weakening). The difference is particularly striking at

18-h lead time when the errors differ by a factor of more

than 300% (although this should be interpreted with

caution in light of the limited sample size at this lead

time). As before, the penalty for applying the model too

FIG. 4. Error distributions (in kt) for the ERC climatologymodel, (a) from onset of ERCweakening to 24 h after, (b) error distributions

when the model is applied too early (6 h prior to the onset of weakening), and (c) when the model is applied 6 h after the onset of

weakening. Errors are relative to recon-anchored best-track values. Positive (negative) values denote where the model-predicted in-

tensities are higher (lower) than the best-track data. Sample sizeN is shown for each forecast lead time.MAE and root-mean-square error

(RMSE) are shown as MAE/RMSE pairs (in kt).
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early is initially large (Fig. 5b), although the errors of the

ERC climatology model become smaller than the

SHIPS errors at and beyond 18-h lead time. The more

realistic application at 6 h past ERC weakening (Fig. 5c)

shows larger errors than the perfect timing scenario, as

expected, but there is still a significant reduction com-

pared with SHIPS, with mean absolute errors reduced

by more than 50% at 18-h lead time (again with the

caveat that this value is based on a limited sample size).

The intensity forecast errors during ERC weakening

can also be compared to a larger sample of errors. Here,

we consider the error statistics of both SHIPS and the

official NHC intensity forecasts (obtained from the

NHC official forecast error database; http://www.nhc.

noaa.gov/verification/). For the period 2005–14, and

only considering major hurricanes (intensity of 100kt or

greater), the mean absolute errors (MAEs) of the offi-

cial forecasts at 12- and 24-h forecast lead times are 11

and 16 kt, respectively, and the forecast biases (i.e.,

mean error) are 5 and 10kt, respectively. For our 19

ERC cases, the official MAEs at 12 and 24h forecast

lead times are 13 and 18kt, respectively, and the forecast

biases are also 13 and 18kt, respectively. Performing the

same analysis, but using SHIPS forecasts alone, the

MAEs for major hurricanes during the period 2005–14

at 12- and 24-h forecast lead times are 12 and 15kt, re-

spectively, and the forecast biases are 3 and 7kt, re-

spectively. For our 19 ERC cases, the SHIPS MAEs at

12- and 24-h forecast lead times are 12 and 16kt, re-

spectively, and the forecast biases are 12 and 14 kt, re-

spectively. Within the limitations of these comparisons,

the 12- and 24-h forecast MAEs of the ERC sample are

not significantly different from the larger sample, but

there is a clear difference in the forecast bias (mean

error), as there is a pronounced and consistent over-

prediction of intensity during these events in both the

official forecasts and the SHIPS forecasts.

The ERC climatology model is designed to capture

the transient weakening that is observed during ERCs

but is not captured by SHIPS because the weakening

generally occurs in an environment that is conducive to

intensification (or steady state). However, the conver-

gence of the observed and predicted intensity changes at

lead times beyond 24h after the onset of ERC weak-

ening (Figs. 2 and 3) suggests that the environmental

control of intensity change that was temporarily coun-

termanded is mostly restored after this time. This be-

havior is analogous to landfall cases, in which the usual

environmental controls of intensity change are tempo-

rarily dominated by land effects such as changes in

friction and latent heat exchange. In these cases, the

SHIPS forecasts are replaced with specialized predictions

provided by Decay-SHIPS (Kaplan and DeMaria 1995;

DeMaria et al. 2005; DeMaria et al. 2014). Decay-SHIPS

(D-SHIPS) temporarily takes control of the intensity

evolution until the storm reemerges over water (if it does

at all), after which the environmental control is handed

back and the usual SHIPS intensity change predictions are

applied. The ERC climatology model is designed to be

applied in the same way, although the onset of ERC

weakening is significantly harder to predict, or even di-

agnose (e.g., Kossin and Sitkowski 2009), than landfall.

When this is done, the ERC climatology model can

provide forecasts out to the same lead times as SHIPS

and, in effect, simply adjusts the SHIPS intensity forecasts

by a constant factor at all lead times beyond 24h after

onset of ERC weakening. For naming consistency with

D-SHIPS then, we will refer to the ERC climatology

model as E-SHIPS.

A comparison of the mean D-SHIPS and E-SHIPS

forecasts is shown in Fig. 6 for the 16 of 19 ERC events

that were not interrupted by landfall within 24h after

onset of weakening. The colored lines in Fig. 6 show the

average forecast values over these 16 ERC events, and

the black line shows the average best-track intensities

from 18h prior to onset of ERC weakening to 66h after.

The forecasts are shown for the time of onset of weak-

ening, and for the following three 6-hourly forecast

FIG. 5. As in Fig. 4, but comparing the ERC climatology (ERC)model to SHIPS (SHP). For the 19 ERC events, the operational SHIPS

data are available with 12-hourly resolution in the pre-2005 storms, and with 6-hourly resolution out to 24-h lead time and 12 hourly at

longer lead times for 2005 and later storms.
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cycles. The initial errors, as seen by the vertical distance

between the black dots and the black line, show the errors

in the operational estimate of current intensity compared

to the postseason analyzed intensities that become the

best track. At the onset of weakening (t5 0h), D-SHIPS

predicts little change in intensity, which causes a large

overprediction in intensity that extends to 48-h lead time

and beyond. Similar D-SHIPS errors occur in the fol-

lowing forecast cycle, 6 h after the onset of weakening.

In the following forecast cycle, 12h after the onset of

weakening, the D-SHIPS and E-SHIPS errors are more

comparable but with E-SHIPS still providing somewhat

smaller errors at 6–12-h lead time. In the next forecast

cycle, 18h after onset, the D-SHIPS result actually has

smaller errors than E-SHIPS, although this is largely due

to the high bias of the operational best estimate of current

intensity for that forecast cycle.

Noting also from Fig. 6 that the onset of ERC weak-

ening is associated with a clear reversal of intensification

rate that the forecaster would be aware of 6 h after onset,

the most plausible and effective forecast cycles for ap-

plication of the E-SHIPS, then, are the three cycles

6–18h after the onset of weakening. Application of

E-SHIPS at the time of onset could clearly reduce in-

tensity forecast errors further, but this would require a

high level of confidence that an ERC is under way,

perhaps before clear and persistent signs of weakening

emerge. Still, the NHC forecast specialists do have op-

erational access to a model that provides a probability

that an ERC is beginning (Kossin and Sitkowski 2009),

and there may be occasions when weakening is evident

since the last forecast cycle but before the next cycle

arrives. Furthermore, evidence of a developing secondary

wind maximum is often observed by aircraft reconnais-

sance prior to the onset of weakening (Sitkowski et al.

2011), and there can be additional signs of an impending

ERC thatmanifest in satellitemicrowave imagery. In these

cases, the forecast specialist may have the confidence to

apply the model for four consecutive forecast cycles.

E-SHIPS has been selected for operational imple-

mentation at NOAA’s NHC, and is presently being

transitioned to operations as a subalgorithm that runs

within SHIPS. An example of the present form of model

output is shown in Table 2 and provides the forecast

specialist with a choice of when ERC weakening oc-

curred, or will occur. This choice allows the forecast

specialist to apply the model according to the time since

the onset of weakening as well as providing some fore-

sight into how intensity may evolve if an ERC occurs in

the near future.

3. Summary

Hurricane eyewall replacement cycles pose a unique

challenge to operational intensity forecasting because

the intensity evolution during these cycles is appar-

ently driven mostly by vortex-scale processes that are

TABLE 2. Present format of the ERC climatologymodel (E-SHIPS) output applied within SHIPS. Forecast lead times span 0–120 h. All

other values are intensity (kt). Values at lead time5 0 are the operational best estimates of current intensity for this forecast cycle. In cases

when the onset of ERC weakening occurred 24 h ago, the ERC climatology model forecasts are identical to D-SHIPS.

Lead time (h) 0 6 12 18 24 36 48 60 72 84 96 108 120

D-SHIPS forecast 115 115 118 121 122 122 122 113 109 103 92 52 46

E-SHIPS forecasts

Onset of ERC weakening

24 h ago 115 115 118 121 122 122 122 113 109 103 92 52 46

18 h ago 115 114 117 120 121 121 121 112 108 102 91 51 45

12 h ago 115 112 111 114 115 115 115 106 102 96 85 45 39

6 h ago 115 109 106 105 106 106 106 97 93 87 76 36 30

Now 115 106 100 97 96 96 96 87 83 77 66 26 20

In 6 h 115 115 106 100 97 95 95 86 82 76 65 25 19

In 12 h 115 115 118 109 103 99 99 90 86 80 69 29 23

FIG. 6. Operational D-SHIPS (red) and E-SHIPS (blue) fore-

casts at the onset of ERC weakening and in the following three

6-hourly forecast cycles after the onset. Black dots show the mean

operational best estimates of current intensity for the four

forecast cycles.
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internally regulated. This is in contrast to the more

common aspects of intensity evolution in which the ex-

ternal (ambient) environment that the storm moves

through plays the key role. Since SHIPS, which is a

primary intensity guidance model for NOAA’s NHC,

depends largely on the relationship between the evolu-

tion of intensity and the ambient environment, the

transient but large intensity excursions during an ERC

are not captured by the model and thus can introduce

substantial error into operational intensity forecasts.

This is somewhat analogous to cases when storms in-

teract temporarily with land (e.g., passage over a large

island or a peninsula), and the usual environmental

controls of intensity are countermanded by other factors

related to the land interaction. As these storms reemerge

into open water, the usual environmental controls are re-

stored. For ERC cases, the usual environmental controls

of intensity are restored, on average, after about 18–24h

after the onset of weakening occurred. Here, we in-

troduced a model designed to specifically address the

transient deficiencies of SHIPS during ERCs. The model,

named E-SHIPS, is based on a simple climatology of in-

tensity changes observed in 19 ERC events and is being

transitioned into NOAA’s NHC operations as a sub-

algorithm of SHIPS, with the tenable prospect that it will

contribute to reducing operational intensity forecast errors.

As a closing note, as operational numerical weather

prediction (NWP) models have become increasingly

sophisticated, internal hurricane vortex dynamics have

become better represented. Indeed, operational NWP

models, such as the Hurricane Weather Research and

Forecasting (HWRF) Model, have been shown to pro-

duce ERCs in idealized settings as well as hindcast set-

tings (e.g., Zhu et al. 2015 and references therein). It is

not yet clear, however, how these advancements will be

ultimately utilized in operational forecasts. ERCs may

be unique among internal vortex dynamical processes, in

that they apparently behave as discrete short-lived events,

rather than as part of a continuum of internal processes

that contribute, for example, to the intensification process

(e.g.,Montgomery and Smith 2014 and references therein).

Thus, in addition to the primary challenge of simply

generating a realistic ERC, the operational NWP models

(ormodel ensembles)must also capture the timing of onset

and subsequent duration of the ERC. Given the transient

nature of the intensity fluctuations associated with ERCs,

accurate timing is essential, which poses a significant chal-

lenge to NWP model development as well as model in-

terpretation in an operational setting.
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